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Astract. In this pal)('r, wc study the Local Discontinuous Galcrkin meth()ds for

nonlinear, time-dependent convection-diffusi()n systelnS. These methods are an ex-

tensi()n of the Runge-Kutta Discontinu(ms Galerkin nleth()ds for purely hyperl)()lic

systems to convection-diffusion systems and share with thos(" meth()ds their high

parallelizability, their high-order formal accuracy, and their easy handling of c()m-

1)licated geoInetries, for convection dominated problems. It is proven that ti)r scalar

equations, the Local Discontinuous Galerkin methods are L2-stable in the nonlinear

case. Moreover, in th(' linear case, it is shown that if polynomials ()f degree k are

used, the methods are k-th order accurate fi)r general triangulations: although this

order of convergence is sul)optinml, it is sharp for the LDG meth()ds. Preliminary

numerical examples displaying the pertbrmance of the method arc sh()wn.
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1. Introduction. In this paper, we study the Local Discontinuous Galerkin

(LDG) methods for nonlinear, convection-diffusion systems of the form

O,u+V.F(u, Du)=O, in(O,T) x f_,

where Ft C IRa and u = (_/1 .... , 'u,, )t. The LDG methods are an extension of the

Runge-Kutta Discontinuous Galerkin (RKDG) methods for the nonlinear hyper-

bolic system

&u+V-f(u)=0, in(0. T) × fL

introduced by the authors [12,13,14,15,16], and further developed by Atkins and

Shu [2], Bassi and Reba.y [4], Bey a.nd Oden [7], Biswas, Devine. and Flahcrty [8],

deCougny et al. [17], Devine et al. [19, 20], Lowrie, Roe and van Lee:" [30], and by

C)zturan et al. [33]. The RKDG methods are constructed by applying the explicit

time discretiza.tions introduced by Shu [37] and Shu and ()slier [3S,391to a space

discretization that uses discontinuous basis functions. Since the space discretization

is highly local in character and produces easily invertible, block-diagonal mass

matrices and since the tin:e-marching scheme is explicit, the RKDG method is a

highly parallelizable method; see Biswa.s, Devine, and Flaherty [S]. Moreover, it is

not only a formally high-order accurate method that can easily handle complicated

geometries, but it satisfies a cell entropy inequality that enfi>rces a nonlinear L 2-

stability property even without the slope limiters typical of this method; see Jiang

and Shu [27].

Extensions of tile RKDG method to hydrodynamic models fi3r semiconductor

device simulation have been constructed by Chen et al. [9], [10]. In these extensions,

approxinmtions of the derivatives of the discontinuous approximate solution are

obtained by ::sing a simple projection into suitable finite elements spaces. This

projection requires the inversion of global mass matrices, which in [9] and [10] are

'hunped' in order to maintain the high parallelizability of the method. Since in [9]



and [10]polynomialsof degreeoneareused,the 'masslumping' is justified; however,

if polynomials of higher degreewere used, the 'mass lumping' neededto enforce

tile full parallelizability of the method could cause a degradation of the formal

order of accuracy. Fortunately, this is not an issuewith the methods proposedby

Bassi and Rebay [5] (seealso Bassi et al [6]) for the compressible Navier-Stokes

equations. In these nlethods, the original idea of tile RKDG method is applied

to both u and D u which are now considered as independent unknowns. Like the

RKDG methods, the resulting methods are highly parallelizable methods of high-

order accuracy which are very efficient for time-dependent, convection-dominated

flows. The LDG methods are a generalization of these methods.

The basic idea to construct the LDG methods is to suitably rewrite the convection-

diffusion system into a larger, degenerate, first-order system and then discretize it

by the RKDG method. By a careful choice of this rewriting, nonlinear stability can

be achieved even without slope limiters, just as the RKDG method in the purely

hyperbolic case; see Jiang and Shu [27]. In the linear case, the stability result leads

to the sub-optimal rate of (Ax) k for the L _ (0, T;L 2 )-norm of the error if polynomi-

als of degree at most k are used. However, these estimates are sharp, as numerical

evidence reported in Bassi et al. [6] and in this paper indicate. In the purely

hyperbolic case, the rate of convergence of (Ax) k+l/'2 is recovered, as expected.

Indeed, this is the same rate of convergence obtained for the original Discontinuous

Galerkin method (introduced by Reed and Hill [35]) for purely hyperbolic case by

Johnson and Pitkar/inta [28] and confirmed to be optimal by Peterson [34]. LeSaint

and Raviart [29] proved a rate of convergence of (Ax) k for general triangulations

and of (A.r) TM for Cartesian grids; Richter [36] obtained the optimal rate of con-

vergence of (Ax)k+l for some structured two-dimensional non-Cartesian grids. The

technique for proving the error estimates used in this paper is different from the

techniques used in the above mentioned papers. It is very simple and relies, as ex-
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peered, on a straightforward combination of (i) the L2-stability of the LDG nlethod

and of (ii) the approxinmtion properties of the finite element spaces.

The LDG methods introduced in this paper are very different h'om the so-called

Discontinuous Galerkin (DG) method for parabolic problems introduced by Jamet

[26] and studied by Erikssom Johnson, and Thomde [25], Eriksson and Johnson [21,

22, 23, 24]. and more recently by Makridakis and Babu_,ka [31]. hi the DG method,

the api)roxinm.te solution is discontinuous only in time, not in space: in fact, the

space diseretization is the standard Galerkin discretization with contimur_ts finite

elements. This is in strong contrast with the space discretizations of the LDG

methods which use discoT_,ti,t'_,o'_t_' finite elements. T() emphasize this difference, we

call the methods developed in this paper the Local Diseontimlous Galerkin meth-

ods. We also nmst emphasize that the large number of degrees of free(tom and the

restrictive conditions of the size of the time step fi)r explicit time-discretizations,

render the LDG methods inefficient fi)r diffusion-dominated prol)lenis: in this sit-

ua.tiom the use of methods with continuous-in-space apt)roximate solutions is rec-

ommended. However, as for the successfld RKDG methods for purely hyperbolic

problems, the extremely local domain of dependency of the LDG methods allows

a very efficient parallelization that by far compensates fi_r the extra mmlber of

degrees of fl'eedom in the case of convection-dominated flows.

Many researchers have worked in the devising and analysis of numerical meth-

ods for convection-dominated flows. In particular, Dawson [18] and, more recently,

Arbogast and "_Vheeler [1] have developed and analyzed methods that share several

properties with the LDG methods: They use discontimums-in-slmce approxima-

tions, they are locally conservative, and they approximate the diffusive fluxes with

independent variables (]_y using a. mixed method). We refer the reader interested in

numerical meth(,ds for convection-dominated flows to [18] and [1] and the references

therein.
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Another numerical method that usesdiscontinuousapproximations is the one

proposed and studied by Baker et al. [3]. This method, however, is not for

convection-dominated flows but for the Stokes problem. Tile advantage of using

discontinuous approximations in this setting is that this allows for a pointwise ver-

ification of the incompressibility condition at the interior of each triangle. Optimal

estimates are obtained.

In this paper, we restrict ourselves to the semidiscrete LDG methods for convection-

diffusion problems with periodic boundary conditions. Our aim is to clearly display

the most distinctive features of the LDG methods in a setting as simple as possible.

The fully discrete methods for convection-diffusion problems in bounded domains

will 1)e treated in a fortheonfing paper. This paper is organized as fi)llows: In _2,

we introduce the LDG methods for the simple one-dimensional case d = 1 in which

F( ,. Du ) = f(',) - a(u ) 0.. u.

u is a scalar and a(u) >_ 0 and show some preliminary numerical results displaying

the performance of the method. In this simple setting, the main ideas of how to

devise the method and how to analyze it can be clearly displayed in a simple way.

Thus, the L2-stability of the method is proven in the general nonlinear case and

the rate of convergence of (Ax) _"in the L_(0, T;L 2 )-norm for polynonfials of degree

k _> 0 in the linear case is obtained; this estimate is sharl). In §3, we extend these

results to the case in which u is a scalar and

Fi('u, D'u) = f,(u) - E aij(u) O_j u,

l<_j<d

where aij defines a positive semidefinite matrix. Again, the L%stability of the

method is proven for the general nonlinear case and the rate of convergence of

(Ax) k in the L_c(O, T;L 2)-norm for polynomials of degree k _> 0 and arbitrary tri-

angulations is proven in the linear case. In this case, the multidimensionality of the
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problenl and the arbitrariness of the grids increasetile technicality of the analysis

of the method which, nevertheless,usesthe sameideasof the one-dimensionalcase.

In §4, tile extension of' the LDG method to multidinlensional systems is briefly

described and concluding remarks are offered.

2. The LDG methods for the one-dimenslonal case. In this section, we

present and analyze the LDG methods for the following simple model prol)lem:

O__l+ 0_ (f(_t,) - a('t_)0_. . ) = 0

¢l(t = O) = "o,

in (0, T) x (0, 1), (2.1a)

on (0, 1). (2.1t,)

with pe,'iodicb(mndary conditi(ms.

a. General forlnulation and mahl properties. To define the LDG ,nethod,

we introduce the new varial_le q = V/a(u) 0._.'u and rewrite the problem (2.1) as

follows:

O,_,+ Ox(f(,,) - _ q) = o

q - 0_.#(_) = o

u(t = O) = uo,

in (0, T) x (0, 1), (2.2a)

in (0, T) × (0.1), (2.2b)

on (0, 1), (2.2c)

where g(u) = f" _ d._. Tilt" LDG meth(,d for (2.1) is now obtained by simply

discretizing the above system with the Discontinuous Galerkin method.

T(, (lo that, w(' follow [13] and [14]. We define the flux h = (h,,, hq )' as tbllows:

h(u,q) = (J'(u) - V/_u)q, -g(u) )'. (2.3)

For each partition of the interval (0, 1), {.rj+j/2 }j=0 we set Ij = (:rj__/.2.xj+_/2),

and A:rj = d'j_t_ 1/2 -;l'j_ 1/2 for j = 1 .... , N; we denote tile quantity maxl<_j _<_,\,_.__,rj

by A:r . We seek an a i)t_roxinmti(m Wh = (uh,qh) t to w = (u,q) l such that tbr

each time t E [0, T], both uh(t) and qh(t) 1,eh,ng to the finite dimensional space

1), -- l)_' = {,, E t_((),l) • _,l_j cPk(Ij), j=l ..... At}. (2.4)



6

where Pk(I) denotes the space of polynomials in I of degree at most k. In order

to determine the approximate solution (uh, qh), we first note that by multiplying

(2.2a), (2.2b), and (2.2c) by arbitrary, smooth functions v,,, vq, and vi, respectively,

and integrating over Ij, we get, after a simple formal integration by parts in (2.2a)

and (2.2t)),

f

_- hu (w(J'j+l/2, t)) uu (X;+l/2 ) - hu(w(xj_l/2, t)) v u (,7:+J--l/2 ) = O,

(2.5a)

/j q(x,t)Vq(x)dx- /j bq(W(X,t))Ox Vq(X)dx

-Jr- ]Iq( W( J'j+ l /2 , _ ) ) I'q ( :Fj--+ l /2 ) -- ]Iq(W(.F j__l /2 , _ ) ) _'q(X___l/2) ---- O,

(2.5b)

f
J

Next, we replace tile smooth functions v,,, vq, and vi by test functions 'vh,,, Vh,q, and

vh,i, respectively, in the finite element space t_)_ and the exact solution w = (u, q)t

by the approximate solution wh = ('uh,qh)t. Since this function is discontinuous

in each of its components, we must also replace the nonlinear flux h(w(xj+l/2, t))

by a mnnerical flux h(w)j_t_l/2(t ) = (_u(wh)j_Fl/2(t), Lq(Wh)j+l/2(f)) that will be

suitably chosen later. Thus, the approximate solution given by the LDG method

is defined as the solution of the following weak fornmlation:

_j Ot uh(x,_)"h u(x)dx -- / t_u(Wh(X,'))Ox vh,u(x)dx

Jr ]lu(Wh )jA-1/2(_)'Uh'u(;F j--+l/2 ) -- i'u(Wh )j-1/2(t ) Uh,u(J'_-l/2 ) _-- O,

fi qh(x,')vh,q(x)dx -- fi I'q(Wh(X,t))Ox vh,q(x)dx

+ ],q(Wh )j+ll2(t)Vh,q(X-f+ll2) - fl, q(W h )j_ll,2(t)Vh,q(X+_al 2 ) = O,

uh(x,O)vh,i(a')dx = f uo(x)vh,i(x)dx, V vh,i c Pk(lj).
J

V 'l'h,q _ Pk(I)),

(2.6b)

(2.6c)
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It only remains to choosethe numerical flux [l(wh )j+l/'_,(t). We use the notation:

1 +
[p]=p+-p-, and _= 7(p +p-),

4- 1,±and Pj+l/2 = P(" j+1/2 )" To be consistent with the type of numerical fluxes used in

the RKDG methods, we consider numerical fluxes of the form

that (i) are locally Lipschitz and consistent with the flux h, (ii) alh,w for a local

resolution of qh in terms of uh. (iii) reduce t(, an E-flux (see Osher [32]) when

o(-) - 0, and that (iv) enfi_rce the L2-stability of the method.

T() reflect the convection-diffusion nature (if' the t_r()lflem under consideration.

we write our numerical flux as the sum of a convective flux and a ditlilsiv(' flux:

l_(w- w+) = l_o,,,,(w-, w+) + l'id,H(w-, w+). (2.7a)

The convective flux is given by

li_o,,,,(w-, w+) = (,}(,,-, ,,+), o)', (2.71))

where f(u-, u +) is any locally Lipschitz E-flux consistent with the nonlinearity f,

and the diffusive flux is given by

where

f,,,::(.,,-, w+ ) = ( [.q(")] _. -::(,,))'
[" ] - c,_:: [w ], (2.7(')

0 C12 ) (2.7(t)Cdi f f = --C1'2 0 '

c12 = c12(w-,w +) is locally Lipschitz. (2.7e)

cl,., - 0 when o(-) - 0. (2.7f)

We claim that this flux satisfies the prolmrties (i) to (iv).
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Let us prove our claim. That tile flux 11 is consistent with the flux h easily

follows from their definitions, (2.3) and (2.7). That 1_ is locally Lipschitz follows

from the fact that f(.,-) is locally Lipschitz and from (2.7d); we assume that f(.)

and a(-) are locally Lipschitz functions, of course. Property (i) is hence satisfied.

That the approximate solution qh cai1 be resolved element by element in terms of

uh by using (2.6b) follows from the fact that, by (2.7c), the flux ]_q = -.q(,)-c12 [u]

is indel)endent of qh. Property (ii) is hence satisfied.

Property (iii) is also satisfied by (2.7f) and by the construction of the convective

fhlx.

To see that the property (iv) is satisfied, let us first rewrite the flux II in the

following way:

where

f_(w-,w+) = ( [. ]

1Z '

wh e re

[g(")] r_,-_j(,,) )'-C[w ]
[,1

/? { }oT,,,:([w,,])= _ [w_(_)]'c[wh(_)] d_.
l<_j_<._ j+1/2

with O(u)defined by O(u)= f_ f(._)d.s. Since f(., .)is an E-flux,

1 Z "+_,, - [.]_ - (.t(._l-./(,,-,_,+))d._ > 0.

and so, by (2.7d), the matrix C is semipositive definite. The property (iv) fi)llows

fi'om this fact and from the following result.

Proposition 2.1. (L2-stability) We have,

ZTZ ] IZI,u,_(:r,T)dx + q'_(x,t)dxdt q-OT,C([Wb])< _ tt2(x)dx,



9

This result will be proven in section !}2.c. Thus, this shows that the flux 1_1given

by (2.7) does satisfy the properties (i) to (iv)- as claimed.

Now, we turn to tile question of the quality of tile approximate solution defined

by tile LDG method. In the linear case .f' _ c and o(. ) _ o, fl(ml the al)ove stability

result and from the the a i)proximation properties of the finite element space 1),,

we can prove the following error estimate. \Ve denote the L2(0.1 )-norm of the _-th

derivative of u by ]u It.

(L2-error estimate) Let e be the approximation error w-wj,. ThenTheorem 2.2.

'we have,

{/o' foTo'] __,(.r, T) d.r +

where C = C'(a',I*'I_'+,,]" I_'+_)-

1/2I(q(.r,t)lZdxdt+O.r::([e]) _< C(A.r) k,

In the purely hyperbolic case a = O. th,e constant

C is of order (,kx) 1/2 and in the purely parabolic case c = O. th, e constant C is of

order z_kx for even values of k for ltTtifor_7_, grids and for C identicalh, j zero.

This result will be proven in section !i2.d. The above error estimate gives a

suboptinml order of convergence, but it is sharp for the LDG methods. Indeed,

Bassi et al [6] report an order of convergence of order k + 1 for even values of

k and of order k fi)r odd values of k for a steady state, lmrely elliptic problem

for unifi)rm grids and fi)r C identicMly zero. Our numerical results fi)r a lmrely

parabolic problem give the same conclusions; see Table 5 in the section ,_2.b.

Our error estimate is also sharp in that the optinml order of convergence of

k + 1/2 is recovered in the purely hyperl)olic ca s< as expected. This inll)rovement

of the order of convergence is a reflection of the semipositive definiteness of the

matrix C, which enhances the stal)ility properties ()f the LDG lnethod. Indeed,

since in the tmrely hyl)erbolic case

l z{ }(-)r,:([wh]) = [,,,(t)]' ,,l [,,,,(_)] dr.

1_<j<_,\_ j+J/2
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the method enforces a control of the jumps of the variable Uh, as shown in Propo-

sition 2.1. This additional control is reflected in the improvement of the order of

accuracy from k in the general case to k + 1/2 in the purely hyperbolic case.

However, this can only happen in the purely hyperbolic case for the LDG meth-

ods. Indeed, since Cll = 0 for c = 0, the control of the jumps of uh is not enforced

in the purely parabolic case. As indicated by the numerical experiments of Bassi et

al. [6] and those of section §2.b below, this can result in the effective degradation of

the order of convergence. To remedy this situation, the control of the jumps of uh

in the purely parabolic case can lye easily enforced by letting Cll be strictly positive

if lc] + l a] > o. Unfortunately, this is not enough to guarantee an improvement

of the accuracy: an additional control on the .iumps of qh is required! This can lye

easily achieved by allowing the matrix C to be symmetric and positive definite when

a > 0. In this case, the order of convergence of k + 1/2 can be easily obtained for

the general convection-diffusion case. However, this would force the matrix ('::try

c22 to be nonzero and the property (ii) of local resolvability of qh in terms of 'uh

would not be satisfied anymore. As a consequence, the high parallelizability of the

LDG would be lost.

The above result shows how strongly the order of convergence of the LDG meth-

ods depend on the choice of the matrix C. In fact, the numerical results of section

!}2.b in uniform grids indicate that with yet another choice of the matrix C, see

(2.9), the LDG method converges with the optimal order of k + 1 in the general

case. The analysis of this phenomenon constitutes the subject of ongoing work.

b. Preliminary numerical results.

In this section we provide prelin:inary numerical results for the schemes discussed

in this paper. We will only provide results for the following one dimensional, linear
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convectiondiffusion equation

Ot ,I + c O, u - a Oj2 . = 0

u(t = 0, x) = sin(x).

in (0, T) x (0, 2 re),

on (0, 2 7r),

where c and a > 0 are both constants; periodic boundary conditions are used. The

exact solution is u(t, x) = _-_, sin(x-c7'). We compute tile solution up to T = 2,

and use the LDG method with C defined by

t,,i 2

0
(2.o)

We notice that, for this choice of fluxes, the a.pproxima.tioll to the convective term

cux is the standard upwinding, and that the apl,roximation to the diffusion term

a 0.,2 u is the standard three point central difference, for the p0 case. On the other

hand, if one uses a central flux correst)onding to cl.., = -c21 = 0, one gets a spread-

out five point central difference approximation to the diffusion term a 0" u.

The LDG methods based on pk with k = 1.9 3.4 are tested. Elements with

equal size are used. Time discretization is by the third-order accurate TVD Runge-

Kutta method [38], with a sufficiently slnall time step so that error in time is

negligible comparing with spatial errors. We list the L,,_ errors and numerical

orders of a.ccmacy, for u j,, as well as for its derivatives suitably scaled A.r"'0" uh

for 1 <_ m _< k, a.t the center of of each element. This gives the complete description

of the error for _lh over the whole domain, a.s 'u.t, in each element is a polynomial

of degree k. We also list the L_ errors and mnnerical orders of accuracy for qh at

the element center.

In all the convection-diffusion runs with a > 0, accuracy of at least (/,' + 1)-th

order is obtained, for both uh and qh, when pt- elements are used. See Tables 1 to

3. The P* case for the irately convection equation a = 0 seems t.o be not in the as-

yml)totic regime yet with N = 40 elements (further refinement with .¥ = 80 suffers
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from round-off effects due to our choice of non-orthogonal basis functions), Table

4. However, the absolute values of the errors are comparable with the convection

dominated case in Table 3.

Table 1. The heat equation a = 1, c = 0. L_ errors and numerical order of

accuracy, measured at the center of each element for Aa 0". uh tbr 0 < m < k,

and for qh.

k variable

2

4

It

,.__.1" _x'll

q

'll

A.r 0,. _*

(Aa,)2 O_,,
q

It

,X.rO. u

(A.r) 2 0_,_
(A*) a 0_,

q

/t

(A.) 2 0_,,
(Ax)30i_ l,
(Ax) 4 04_

q

N= 10

error

4.55E-4

9.01E-3

4.17E-5

1.43E-4

7.87E-4

1.64E-3

1.42E-4

1.54E-5

3.77E-5

1.90E-4

2.51E-4

1.48E-5

2.02E-7

1.65E-6

6.34E-6

2.92E-5

3.03E-5

2.10E-7

N = 20

error

5.79E-5

2.22E-3

2.48E-6

1.76E-5

1.03E-4

2.09E-4

1.76E-5

9.66E-7

2.36E-6

1.17E-5

1.56E-5

9.66E-7

5.51E-9

5.14E-8

2.04E-7

9.47E-7

9.55E-7

5.51E-9

order

2.97

2.02

4.07

3.02

2.93

2.98

3.01

4.00

3.99

4.02

4.00

3.93

5.20

5.00

4.96

4.95

4.98

5.25

N= 40

error

7.27E-6

5.56E-4

1.53E-7

2.19E-6

1.31E-5

2.62E-5

2.19E-6

6.11E-8

1.47E-7

7.34E-7

9.80E-7

6.11E-8

1.63E-10

1.61E-9

6.40E-9

2.99E-8

2.99E-8

1.63E-10

order

2.99

2.00

4.02

3.01

2.98

2.99

3.01

3.98

4.00

3.99

4.00

3.98

5.07

5.00

4.99

4.99

5.00

5.07
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Table 2. The convection diffusion equation, = 1, c = 1. L._ errors and numerical

order of accuracy, measured at the center of each element, for Ax"O_Y ul, for 0 _<

,n _< k, and for qh.

k variable

2

'H

q

II

(A._')2 0_,
q

II

(A:,')_ O__..
q

'It

L._;F Ox?t

(A.,")2 0_U
(A.,):_ 0__.
(A_r)4 04.,

q

N = 10

error

6.47E-4

9.61E-3

2.96E-3

1.42E-4

7.93E-4

1.61E-3

1.26E-4

1.53E-5

3.84E-5

1.89E-4

2.52E-4

1.57E-5

2.04E-7

1.68E-6

6.36E-6

2.99E-5

2.94E-5

1.96E-7

N = 20

err()r

1.25E-4

2.24E-3

1.20E-4

1.76E-5

1.04E-4

2.09E-4

1.63E-5

9.75E-7

2.34E-6

1.18E-5

1.56E-5

9.93E-7

5.50E-9

5.19E-8

2.05E-7

9.57E-7

9.55E-7

5.35E-9

order

2.37

2.10

4.63

3.02

2.93

2.94

2.94

3.98

4.04

4.00

4.01

3.98

5.22

5.01

4.96

4.97

4.95

5.19

N = 40

error

1.59E-5

5.56E-4

1.47E-5

2.18E-6

1.31E-5

2.62E-5

2.12E-6

6.12E-8

1.47E-7

7.36E-7

9.81E-7

6.17E-8

1.64E-10

1.61E-9

6.42E-8

2.99E-8

3.00E-8

1.61E-10

order

2.97

2.01

3.02

3.01

2.99

3.00

2.95

3.99

3.99

4.O0

3.99

4.01

5.07

5.01

5.00

5.00

4.99

5.06
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Table 3. The convectiondominated convectiondiffusion equation a = 0.01, c = 1.

L_ errors and numerical order of accuracy, measured at the center of each element,

, Tit Tllfor Ax c9_'_Uh for 0_<m_< k, andforqh.

k variable

J': C_ x U

q

'll

AxOxu

(A_,)2 0_,_
q

A x 0_ u

(Ax) 2 0_
(A_,,)30_,,

q

/I

Ax 0_ u

(A;r) _0_
(A,r)4 04u

q

N = 10

error

7.14E-3

6.04E-2

8.68E-4

9.59E-4

5.88E-3

1.20E-2

8.99E-5

1.11E-4

2.52E-4

1.37E-3

1.75E-3

1.18E-5

1.85E-6

1.29E-5

5.19E-5

2.21E-4

2.25E-4

3.58E-7

N = 20

error

9.30E-4

1.58E-2

1.09E-4

1.25E-4

7.55E-4

1.50E-3

1.11E-5

7.07E-6

1.71E-5

8.54E-5

1.13E-4

7.28E-7

4.02E-8

3.76E-7

1.48E-6

6.93E-6

6.89E-6

3.06E-9

order

2.94

1.93

3.00

2.94

2.96

3.00

3.01

3.97

3.88

4.00

3.95

4.02

5.53

5.10

5.13

4.99

5.03

6.87

N = 40

error

1.17E-4

4.02E-3

1.31E-5

1.58E-5

9.47E-5

1.90E-4

1.10E-6

4.43E-7

1.07E-6

5.33E-6

7.11E-6

4.75E-8

1.19E-9

1.16E-8

4.65E-8

2.17E-7

2.17E-7

5.05E- 11

order

2.98

1.98

3.05

2.99

3.00

2.98

3.34

4.00

4.00

4.00

3.99

3.94

5.08

5.01

4.99

5.00

4.99

5.92
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Table 4. The convection equation a = 0, c = 1. L_ errors and numerical order of

accuracy, measured at the center of each dement, for Ax'0_'!' uh for 0 _< m </,'.

k variable

3

4

/,(_._,C Ox ¢t

(_,,.)2 o_,_,,

H

J.__21" 0 x It

(A,,")20_"

tl

/._d' 0 x tl

(A,,-):_0_,,

N = 10

error

7.24E-3

6.09E-2

9.96E-4

6.00E-3

1.23E-2

1.26E-4

1.63E-4

1.52E-3

1.35E-3

3.55E-6

1.89E-5

8.49E-5

2.36E-4

2.80E-4

N = 20

erl'or

9.46E-4

1.60E-2

1.28E-4

7.71E-4

1.54E-3

7.50E-6

2.00E-5

9.03E-5

1.24E-4

8.59E-8

1.27E-7

2.28E-6

5.77E-6

8.93E-6

order

2.94

1.92

2.96

2.96

3.00

4.07

3.03

4.07

3.45

5.37

7.22

5.22

5.36

4.97

N = 40

error

1.20E-4

4.09E-3

1.61E-5

9.67E-5

1.94E-4

4.54E-7

1.07E-6

5.45E-6

7.19E-6

3.28E-10

1.54E-8

2.33E-8

2.34E-7

1.70E-7

order

2.98

1.97

2.99

3.00

2.99

4.05

4.21

4.05

4.10

6.03

3.05

6.61

4.62

5.72

Finally, t() show that the order of accuracy couht really degenerate to k fi)r Pa,

as was aheady observed in [6], we rerun the heat equati()n case a = 1, c = 0 with

the central flux

This time w(' can see that the gh)l)al order of accuracx' in /._ is only _' whell pk is

used with an odd value of k.
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Table 5. Tile heat equation a = 1, c = 0. Lo¢ errors and numerical order of

accuracy, measured at the center of each element, for AxmO_ uh for 0 < m < k,

and for qh, using the central flux.

k variable

"u

A:r O.u

q

it

A.r O.u
(_.)2 0.2..

q

tt

M_;F Ox It

(=X.)a 0_,
q

u

A x 0_. u

(_.,1)2 0_ _,
(_,,. )a 0_u

q

N= 10

error

3.59E-3

2.10E-2

2.39E-3

6.91E-5

7.66E-4

2.98E-4

6.52E-5

1.62E-5

1.06E-4

1.99E-4

6.81E-4

1.54E-5

8.25E-8

1.62E-6

1.61E-6

2.90E-5

5.23E-6

7.85E-8

N= 20

error

8.92E-4

1.06E-2

6.19E-4

4.12E-6

1.03E-4

1.68E-5

4.11E-6

1.01E-6

1.32E-5

1.22E-5

8.68E-5

1.01E-6

1.31E-9

5.12E-8

2.41E-8

9.46E-7

7.59E-8

1.31E-9

order

2.01

0.98

1.95

4.07

2.90

4.15

3.99

4.00

3.01

4.03

2.97

3.93

5.97

4.98

6.06

4.94

6.11

5.90

N = 40

error

2.25E-4

5.31E-3

1.56E-4

2.57E-7

1.30E-5

1.03E-6

2.57E-7

6.41E-8

1.64E-6

7.70E-7

1.09E-5

6.41E-8

2.11E-11

1.60E-9

3.78E-10

2.99E-8

1.18E-9

2.11E-11

order

1.98

1.00

1.99

4.00

2.98

4.02

4.00

3.98

3.00

3.99

2.99

3.98

5.96

5.00

6.00

4.99

6.01

5.96

c. Proof of the nonlinear stability. In this section, we prove the the nonlinear

stability result of Proposition 2.1. To do that, we first show how to obtain the

corresponding stability result for the exact solution and then mimic the argument

to obtain Proposition 2.1.

The continuous case as a model. We start by rewriting the equations (2.5a)

and (2.5b), in compact form. If in equations (2.5a) and (2.5b) we replace v_(.r) and
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Uq(X) by u,(x, t) and vq(x, t), respectively, add the resulting equations, sum on j

from 1 to N, and integrate in time from 0 to T, we obtain that

B(w,v) = O, Vsmooth v(t), Vt¢ (0, T), (2.10a)

where

T 1

J0?0'- h(w(x, t)) t 0,. v(x, t) dx (It, (2.10b)

using the fact that h(w(.r, t))' 0_,w(;r, t) = 0,. ( O(, ) - g( u ) q ) is a complete deriva-

rive, we st,(" that

1/0'_(w, w) --

T 1

+ .{ .[

_:r'_ 1 lf0' u_(,r) d.r,u 2 (x, T) dx + q2 (:r, t) d:r dt - -4
(_2.11)

and that B(w, w) = 0, by (2.10a), we immediateh, obtain the fi,llowing L2-stabilitv

result:

l_o1 /07/01 1 /01 u_(x)dx.u2 (.r, T) dx + q2 (.r. _) dx d¢ = _.

This is the argument we have to mimic in order to prove Proposition 2.1.

The discrete case. Thus. we start by finding a compact form of equations

(2.6a) and (2.6b). If we replace Vh,,(x) and vh,q(x)1)y O,,,,(x,t) and vh,q(x,t) in

the equati(ms (2.6a) and (2.6b), add them up, sum on j from 1 to N and integrate

in time from 0 to T, we obtain

Bh(Wt,,Vl,) = O, Vvh(t) ¢ I)_ × t)_, Vt • (0, T). (2.12a)

where

_ fo_0 1 _0 F_ol
Bh(Wh,Vh) = OtUh(x,t) vh,,,(.r.t) dx dt +

T

fi(wh )i+,/2 (_)[vh (_)].i+_/_ ,1_
• 1 _ _ N

1 3<N_ i ' °

qb ( 3", t) I'h, q (3', 1¢) dd• dt

(2.12b)
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Next, we obtain an expression for _h(Wh, Wh). It is contained in the following

result.

Lemma 2.3. We have

l_ol o_0r_01 1_01t_h(wh,wh) =__ ._(x,r) dx + q_(x,t)dxdt + Or,=([wh]) - _

where Or, c([wh]) is defined in Proposition 2.1.

Next, since Bh(Wh, Wh ) = 0, 1)3' (2.12a), we get the inequality

1 foe _or_ 1 1 f01u_(x,T)dx + q2(x,t)dxdt -[-OT.C([Wh])= _ _12(x,O)d:r

fl'om which Proposition 2.1 easily follows, since

1I' lfo'

by (2.5c). It remains to prove Lemma 2.3.

Proof Lemma 2.3. After setting Vh = Wh in (2.12t)), we get

1_ol _0 To_01 o_0 r l f01B(Wh,Wh) =_ u_,(x,T)dx + q_(x,t)dzdt + Oe,_(t)dt-

where

I<j_<N
h(wl, (.,', t) )' Oxwh (x, t) d,_,}.

h(wh (x, t))t Or wh (x, t) = ( f(uh ) -- v/-a((uh ) qh ) Ox Uh -- g(Uh ) 0_ qh

tl h
= o. ( f(_) d_ - g(_,h) qh)

= c3.,.((b(uh) --g('uh)q,,)

- 0x H(wh (x, t)),

To do that, we proceed as follows. Since

_(x,0)dx,

It only remains to show that foT Oai_(t)dt = OT,C([wh]).
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we get

[H(wh(t))]j+l/2 l_(w,,)' (t) [w,,(t)]j+ /2}-- j+l/2 1

{ [H(Wh(/))] -- (l(Wh)t(/)[Wh(l_)]},+l/2

Since, by the definition of H,

[H(w,,(t)) ] = [ _(,,h(_))] - [g(,,,,(t))q,,(t)]

= [o(,,,,(_))]- [v(.h(t))]_,,(t)- [qh(t)]:t(,,_,(_)).

and since (iIu,]lq)t = fi, V¢P get

(-,_,,_,,(,)= y_ {[O("h(t)']--[g("h('))lvh,(')--[,,h(')]L.}
1_j< N j+l/2

+ Z l--[qh(l)]g(uh)(t)--[qh(t)]f'q_ '

I<j<N k)j+t/2

This is the crucial step to obtain, the L2-stability of th, e LDG methods, since the

above expression gives us key information al)out the fbrm that the flux [a should

have in order to make Odis.q(/) a nonnegative quantity and hence enfiwce the L 2-

stability of the LDG methods. Thus. by taking h as in (2.7a), we get

Odiss(/) = Z { [wh(/)]tc [Wh(t)] } ,
I<j<N j+l/2

and the result follows. This completes the proof. []

This coml)letes the proof of Proposition 2.1.

c. The error estimate in the linear case. In this section, we prove the error

estimate of Theorem 2.2 which holds for the linear case f'(. ) _= c and o(.) = a. T() do

that. we first sh()w how t() estimate the error between the solutions w,, = (u,,, q,, )t

1, = 1.2. of

0, ,,,, + 0,- (.f(,,,, ) - _ ) q,,) = 0

q,. - 0. g(,,. ) = 0

u.(t = O) = "0,.,

in (0, T) × (0,1),

in (0, T) × (0, 1),

on (0, 1).
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Then, we minfic the argument in order to prove Theorem 2.2.

The continuous case as a model. By the definition of the form 13(., .), (2.10b),

we have, for v = 1,9

B(w_,v) = O, V smooth v(t), Vt E (O,T).

Since in this case, the form B(.,-) is bilinear, from the above equation we obtain

the so-called error equation:

B(e,v) =0, Vsmooth v(t), Vt C (0, T),

where e = wl - w2. Now, from (2.11), we get that

1f01 f0rf0 | /01
_ 2" 2 . 1 _,,(x,O)dx,

B(e,e) =__ (_,(x,T)d.r + eq(a,t)dxdt - 2

and since eu(x,0) = u0,1(x) -u0,2(x) and B(e,e) = 0, by the error equation, we

immediately obtain the error estimate we sought:

1/0' ' 1/0'e2(3. T)d;F ___ ¢_'2q(_l. t)d3, dt = 2 (.UO,I(.F) _.ttO,2(j, ) )2 d2".

To prove Theorem 2.2, we only need to obtain a discrete version of this argmnent.

The discrete case. Since.

Bh(W_,,Vh) = 0,

Bh(w, Vh ) = 0,

Vt E (0, T),

vt c (o, T),

by (2.12a) and by equations (2.5a) and (2.5b), respectively, we immediately obtain

our error equation:

gh(e, vh) = 0, VVh(t) C l)_ × Vh, Vt E (0, T),

where e = w-wh. Now, according to the continuous case argument, we should con-

sider next the quantity Bh (e, e); however, since e is not in the finite element space, it
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is moreconvenientto considerBt,(I?h(e), Ph(e)), where _h(e(t)) = ( Ph(¢ ,,(t)). IPh((q(t)) )

is the so-called L2-projection of e(t) into the finite element space 1),_ × 1)_. The

L2-i)rojection of tile function p into 1),, Ph(P), is defined as the only element of the

finite element space 1), such that

.L' (_,,0,)(,) - p(,') ) ,,,.(,.),t,,= o.

Note that, in fact ,h(f = 0) = IFh(,0), by (2.6(').

Thus, by Lemma 2.3, we have

ILl i _ frL '_h(_h(e),I_h(e))=_. [_h((,,(Z))(x) dx-£

and since

V _'l, E l),. (2.13)

1L1+ or,c([_j,(e)]) - _.

l ]?h(¢ q(1))(x)12 d.r d/

In%(_..(o))(,.)I_d...

ll_h(e,,(())) = Ph(uO --Uh(O)) = _h(UO) --Uh(O) = O,

by (2.6(') and (2.13), and

_Rh(IPl_(e).IPh(e)) = 13h(_h(e) -- e, Ph(e)) = Bh(I?h(W) -- w, lPt,(e)),

by the error equation, we get

_7

T !

]]P_h((u(Y))(,F) [2 d,F--t- L L ]_'_h((q('))(d')12 d,Fd,

+07",,C([]Ph(e)]) = Bh(_h(W)--W,]Ph(e)).

Note that since in ()ur continu()us m()del.

term B(iPh(w) --w, ll_h(e)) t()1)e small.

Estimating the right-hand side.

treat the term _(IPh(W) -- w, IPh(e)).

(2.14)

the right-hand side is zer(), w'e exl)ect the

T() show that this is so, we nmst suital)ly
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Lemma 2.4. For p = IFh(w) - w, we have

Bh(p, Ph(e)) < ®r,,=(_) + _ [Ph(cq(t))(x) dxdt

Z _0 r /,_O 1 /f C2( ) "

wh e re

•9 2 { (Ic}-_Cll) 2 12dl) [.u(,)[_.+l ___a(Z__d.)2(k--k) [.U(,) 2 }CI(/_) = -Ck ( Axl(:12 [k+l '
Cll

C2(') "gCk( V/_[Cl2 'u(/t) 2 (/--_.r) 2(k-k) 2 }= + o I,(t) 1 +2

where the constants ck and dk depend solely on k, and _" = k except when the grids

are uniform and lc is even, in which case h" = k + 1.

Note how Cll appears in the denominator of C'1(_'). However, C'l(t) remains

bounded as c1_ goes to zero since the c()nvective numerical flux is an E-flux.

To prove this result, we will need the following auxiliary lemmas. We denote bv

1.u iH(k+_)(j)2 the iutegral over J of the square of the (k + 1)-the derivative of u.

Lemlna 2.5. For p = IPh(w) - w, we have

[P-_j+l/2 [ < ca. ( Ax )k+1/2 I" [U'_+"(lj+l/2)'

][P,, ]j+J/2 [ _< c_ ( A.r )k+l/2 [. tH(_+,,(J:+,/._).

[_qjnt_l/2 "< C k V_.( A_._:I" )k'4-1/2 lit IH(_+2}(jj+,/2),

[[Pq]j+l/2 [ <- Ck V/O( Ax )k+l/2 luIH,_.+2,(.19+1/2),

where Jj+_/2 = Ij U lj+1, the constant ck depends solely on k, and h" = k except

when the grids are uniform and k is even, in which case _: = k + 1.

Proof. The two last inequalities follow fi'om tim first two and from the fact that

q = v/-g 0._u. The two first inequalities with [,r = k follow fi'om the definitions of

and [p_ ] and fi'om the following estimate:

1 )k+_/2llPh(")(,t'._+,/2)-"j+,/e[ <- _ca.( _x [" ]H(_+"(J_+I/_),
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where tile constant ck depends solely on ],:. This inequality follows from the fact

that IPh(u)(:r_=+l/2 ) --Uj+l/2 = 0 when u is a. polynonfial of degree k and froln a

simple application of the BraInble-Hill)ert lemma; see Cmrl(t [11].

To prove the inequalities in the case in which 1_"= k + 1, we only need to show

that if u is a t)olynomial of degree k + 1 for k even, then p,_- = 0. It is clear that it

is enough to show this equality for the particular choice

"(:") = ((:" - .",+,/_)/('"'/2))_+'

To prove this, we recall that if" Pc denotes tile Legendrc i)olynomials of order (':

(i) J'l I Pt(._)P,,,(._)d._ = 2_k_& (ii) P_(+I) = (+1) _. and (iii) Pr(._) is a linear2t+l m_

combination of odd (even) I)owers of ._ tbr odd (even) values of (. Since we are

assuming that the grid is Ulfiform, _x.i = A:r.i+l = _x, we Call write, l_y (i),

IPh(u)(x)= Z 2(+l{L' } "r--'r'i
{)</'<k _ 1 -

for x EIj. Hence, for our particular choice of u, we have

1 _-. 2{'+1 /_1
- 0<t<k - • --1

P_(.'_) {(.', - 1) k+1 Pt(1) + (.'_+ 1) k+1 Pt(-1)} d.,,

1 2C'+1 (k+l)/_ 1=-
0 9 i
- O<f,i<k - l

Pt(._)._ _ {(-1) k+'-_ P_(t) + Pt(-1)} d._

1 2{_1(/,:+1) L' P,(._) ._ {(-1) _+'-_ + (-1) c} d.,Z _ i ,
O</,_<k

t)y (ii). When the factor {(-1) _+'-i + (-1) t } is different fl'om zero, I/,'+ 1 -i + r l

is even and since k is also even, [i - ('l is odd. In this case, by (iii),

1 P_(,s),i d._ = O,
• 1

and so _j+l/2 ----- O. This completes the proof. []

We will also need tile following result that follows frolll a simple scaling argullwnt;

see Ciarlet [11].
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Lemma 2.6. We have

I [_h(P)]y+l/2 I --_ dk (_x) -1/2/I IPh(p)HL2tj ),

where Jj+l/2 = Ij tO Ij+l and the coT_stant dk depeTzds solely on k.

V_re are now read), to prove Lemma 2.4.

Proof of Lem_na 2.4. To simpli_ r the notation, let us set vh = ll_he. By the defini-

tion of Bh(','), we have

JO'OTL 1 _0TL 'Bh (p, vh ) = Otpu(.t', t) l'b,u (._', t) d.r dt + pq(X, t) Vh,q(X , t) dx dt

Y

-- ,_0 l<_j<" N il(P)}+l/2(')[Vh(!_)]J+l/2d_;

- Z h(p(x, t)) t O_.vh(x,t)d.rclt

l<_j_<:__" J

/o----- Z fl(P)}+l/2(t)[vh(t)]j+l/2dr'

I<_j<_N

by the definition of the L2-projection (2.13).

Now, re(,alling that p = (p_,,pq)t alld that Vh = (_,**,_,q)t we have

la(p) t [vh(t)] = (c_-2_ - Cll [p. ])[,,, ]

nt- (-- v/aPq -- ('12 [Pq ])["u ]

+ (-v_ + c12[p. ])[,,_ ]

---_ 01 -4- 02 --_ 03 .

By Lemma.s 2.5 and 2.6,

[011_ e_*'(Ax)k+'/2["tIH_'+I(J)([c]-t- Cl_)l[v.]l,

IO_1-< _ dk (_X,,:)k(_ I'_'I._+'.<j) (_X:,')k-k+ v_ ICl_I I. tH_+_(J))) II"'. IlL_(J),

103]_< c, dk(Ax) t' (v_l*tlH_+,(d)(A;r) t'-k -4-ICl"_l[,,tHh+,(,z)))[l*,qIlL_(j ).
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This is the crucial step for obtaining our error estimates. Note that the treatment of

0, is very different than the treatment of 02 and 0:_. The reason for this difference is

that tile upper bound ibr 01 can be controlled t)y tile fornl Or,C([vh])- we recall that

vh = Ph(e). This is not the case for the upper bound for 02 because OT,=[V,] ------0

if c = 0 nor it is the case for the upper bound for 03 because OT.,C[vh] does not

involve the jumps [vq]!

Thus, after a suitable application of "_¥mng's inequality and simple algebraic

manilmlations, we get

1 ]_ 1 , 1 )'_k 1la(p)t[vt,(t)]_< _c'li[v,, +_]lvq _y(./)+ _Cl(t)(Z-_:r +_C2(t)('J-_,C)k]]Vul]L2(.ll.

Sillce

j_o TBh(p. vh) _< E l](p)}+,/z(t)[vh(t)b+l/2 at,

and since .1)+1/2 = Ij U Ii+,, the result fbllows after simple a t)l)lications of the

Cauchy-Schwartz inequality. This conq)letes the proof. []

Conclusion. Combining the equati(m (2.14) with the estimate of Lemma 2.4,

we easily ol)tain, after a simple application of Gronwall's lemma,

{/0 ,-' 'I_h((:.(T))(,r) el,,'+ ]_h(¢q(t))(a') d.rdt+OT.c([Fh(e)])

_< (AJ') t V/_l(t)dt+(A.r) t' C2(t) I lPh(( ,, (t))(:r) d.r dr.

Theorem 2.2 follows easily from this inequality, Lemnm 2.6, and from the fi>llowing

simple approximati(m result:

lip- ( A:,-)k+l ]p]H(.+l,(0,1)

where g_. depends solely (m k: see Ciarlet [11].
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3. The LDG methods for the multi-dimensional case. In this section, we

consider tile LDG methods for the following convection-diffusion model problem

O,u+ Z Ox,(.f,(u)- E ao(u)Ox_ u)=0 in(0, T) x (0,1) d, (3.1a)
l<i<d l<j<d

u(t = 0) = u0, on (0, 1) d, (3.1b)

with t)eriodic boundary conditions. Essentially, the one-dimensional case and tile

multidimensional case can be studied in exactly the same way. However, there are

two important differences that deserve explicit discussion. The first is the treatment

of the matrix of entries (lij(_l), which is assumed to be symmetric, sernipositive

definite and the introduction of the variables qt, and the second is the treatment of

arbitrary meshes.

To define the LDG method, we first notice that, since the matrix aij(tl) is as-

sumed to be symmetric and semipositive definite, there exists a symmetric matrix

bij (u) such that

ao(u)= Z bie(u)btj(u).
l<t<d

Then we define the new scalar variables qt = _-]l<j<_a bt j(u)Oxj

problem (3.1) as follows:

o,.+ }2,
l<i<d l<t<d

qt -- Z Oxj gt'j(u) = O, ( = 1 .... d,

l<j<d

u(t = O) = uo,

(3.2)

u and rewrite the

in (0, T) × (0, 1) d, (3.3a)

in (0, T) x (0, 1) u,

where gtj(u) = f" bt j(.s) ds.

(3.3) by the Discontinuous Galerkin method.

We follow what was done iI1 §2. So, we set w = (u,q) t = (_l,ql,""

for each i = 1,.. • , d, introduce the flux

(3.3t))

on (0, 1) d, (3.3c)

The LDG method is now obtained by discretizing

, qd)t and,

hi(w)= (.fi(u)- E bit(u)qt,-gli(u),... ,--gdi(U))t. (3.4)
l<(<d
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We consider triangulations of (0, 1)d TA.. = { K }, made of non-overlapping poly-

hedra. \¥e require that for any two elements A" and K'. }7 V/}7' is either a face

( of both K and K' with nonzero (d - 1)-Lebesgue measure ] ( ], or has Hausdorff

dimension less than d - 1. \Ve denote by g,,,. the set of all faces ( of the border

of K for all K C T_x,-. The diameter of A" is denoted by A.rt, and the nmximum

A.r,,-, for K E T.x, is denoted by Ax. We require, tbr the sake of simplicity, that

the triangulations T.x, be regular, that is, there is a constant independent of Ax

such that

ir A

--<or V K E Ta,.
PK

where p,,- denotes the diameter of the maximunl ball included in K.

\Ve seek an a,pi)roxinm,tion wh = (uh, ql,)t = (uh,qhl," " " , qhd)t t,o w such that

for each time t E [0, T], each of the comi)onents of wh behmg to the finite element

space

_._ = _)_'= {,, _ L'((0, 1) 't) • ,'l_, c p_(Ic) v ICc T_,}. (3.,5)

' l<i<d"

+ £ _,,,(w,,,n,._,-)(,.,t),,h,,,(.)dr(.,.) = O,
1£

For t'= 1...- ,d"

_ff, q,,t(x,t),',,._(x)dx- Z /tt,
,

l<_j<d

+ f_ J_qr(wh,ni'1,)(a',t) ¢'t,,qt(x)dF(x) = O,
1£

hi ,, (wh (x. 1)) Oa-, "1,.,, (.r) d.r

g t'h,,, C Pk(K),

10 q, (wh (.r, *)) 0,j *'h,q, (.r) d.r

V '_'h,qr C P_'(K).

(3.6a)

(3.6t))

where Pk(K) (len()tes the sl)ace ()f polyn(mfials of total degree at most /,'. In or-

(ler t() determine the approximate solution wh, we pr()ceed exactly as in the one-

dimensional case. This tilne, h()wev(w, the integrals are nmde on each element K of

the triangulation 77.,,.. We obtain the following weak formulation on each element

K of the triangulation T_x,-:
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J_h" i(x)dx = I u0(x)vh i(x)dx, V C pk(/(),

p

_lh(x, O) t'h
Jl( (3.6c)

where noA denotes the outward unit normal to the element I( at ,1" C OK. It

remains to choose the numerical flux (f_,,, b,q,,. • • , t%d )t = [1 - ll(wh, n_A_)(x,t).

As in the one-dimensional case, we require that the fluxes II be of the form

fi(wh, = ,t); ),

where wh (x i'''K ) is the liinit at x taken fl'om the interior of K and wh(a "_*tK ) the

linfit at .r from the exterior of K, and consider fluxes that (i) are locally Lipschitz,

conservative, that is,

fi(Wb(X intK ),Wh(X extK ); herA" ) + l_(wh(a '_*tK ),wh (x i"'_" );--naA-) = O,

and consistent with the flux

Z hi 71Dl(,i,

l<i<d

(ii) allow for a local resolution of each component of qh in terms of uh only, (iii)

reduce to an E-flux when a(-) = 0, and that (iv) enforce the L2-stability of the

method.

Again, we write our numerical flux as the sum of a convective flux and a diffusive

flUX:

fi = + flasH,

where the convective flux is given by

fi.o.,,(w-, w+; n) = (](u-, _,+; n),O)',

where ]('.-, u+;n) is any locally Lipschitz E-flux which is conservative and consis-

tent with the nonlinearity

Z fi(")ni,
l<i<d



and tile diffusive flux lldiff(w-, w+; n) is given by

(- X [v,,(,,t]
_ _ l<i<d

V_rll('rP
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t.q,,(.),,,, .-.- y]_ 9,.(,,),,, -c.,::[w],
l<i<d

( o ,.,e ,l, • el,,I

-eL., 0 0

Cdiff = --('13 0 0

Clj = CIj(W--,W -1-) is locally LiI)schitz for j = 1,.-.. d,

(lj ={} whena(.)-{} tbrj= 1.... ,d.

\Ve claim that this flux satisfies the I}roperties (i) t{} (ix').

T{} prove that l}rOl)(,rties (i) t{} (iii) are satisfied is now a siml}h' 0xorcise. To see

that the i)r{)i}erty (ix') is satisfied, we first rcwrito tho flux 171in th{' following way:

(- Z [:"(")]-
[U] q' "i. -- E "qil(U)"i'''' " -- _ "qid('H)"i )' -- C[w ],

1 <_i,(<d 1 <i<d I <i<d

WIIF'I'( _

C1 1 C12

--('1"2 0

C -'_ --Cl3 0

--old 0

I(E--
Cll _ _ l<i<d

C13 •.. Cld _
K

J0 ... 0

0 .-- 0 ,

• o .

{} •.. {}

[O,([,,,,])] ,,, _ .f(,_ ,,+.n) ).

where Oi(u) = f" fi(.s) d._. Since f(', "; n) is all E-flux,

1 _ tl+_,,- [,,3_ ( Z f,(_),,,-/(,,-,,,+;.)),_,>_o.
. u- 1 <i<d

and so the matrix C is semil)ositive definite. Tho prol)erty (ix,) f()lh}ws fl'()m this

fact and fl'om the folh)wing multidimensi{mal version of Pr()l)osition 2.1.
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Proposition 3.1.

1 fo,1)_

'where

(L2-stability) We have,

f _/'f0 12 '_Ifu](x,T)d. + Iqh(:,_,t) dxdt +Or,c([wh]) <
,1)J o,1) d

'tt2 ( x ) dx,

:oT fOT,C([Wh]) = E [Wh(X,t)]tc [Wh(X,t)]dF(x)dt.

We can also prove the following error estimate. We denote tile integral over

(0, 1) u of the sum of the squares of all the derivatives of order (k + 1) of u by

[u 1_+1.

Theorem 3.2.

'we have, for arbitrary, regular grids,

(L2-error estimate) Let e be the approximation, erTvr w-wh. Then

{ fO _oW_{o [2 / 1/2
le.(J',T)[Zd.r+ leu(*,t) dxdt+(-)r,c([e]) <_ C(Ax)*,

,1} d ,l) d

where C = C(k, ]u Ik+l, [u ]k+2)- ht, the purely hyperbolic case aij = O, the constant

C is of order (Ax) _/2. In the purely parubolic case c = 0, the constant C is of order

_x for even values of k and of order 1 otherwise for Cartesian t_Tvducts of uniform

grids and for C identically zero provided that the local spaces Qk are used instead

of the spaces pk where Q_ is the space of tensor products of one dimensional

polynomials of degree k.

The algebraic manipulations needed to prove this result are a straightforward

extension to the multidimensional case of the manipulations of the proof of the

corresponding one-dimensional result, Theorem 2.2. The approximation properties

of the finite element spaces l'h that extend the results of Lelmnas 2.5 and 2.6 are

the following. Let e: denote a face of the element K and let us denote by/(¢ the

element sharing the face c with/(, then

1 )_-+,/2IlLicit< I"
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where Ph(u) + is either the value of Pl,(u) at e from the interior of K or from its

exterior, and

where [IPh(t))] denotes the jump at (of l?h(p). Finally, we also use the fi)th)wing

result:

Ill,- (A.)*+' It,

All tiles(' approximation results can 1)e fi)und in Ciarlet [11], for exmnple.

4. Concluding remarks. Iil this pai)er, we have considered the so-called LDG

methods for convection-diffusion problems. For scalar pr()blems in nmltidimensions,

we have shown that they are L2-stable and that in the linear case, they are of order

k if polynomials of order k are used. We have also shown that this estimate is sharp

and have displayed the strong dependence of the order ()f c(mvergence of the LDG

methods on the choice of the numerical fluxes.

The LDG methods for nmltidimensional systems, like for example the compress-

ible Navier-Stokes equations and the equations of the hydrodynanlic model for

semiconductor device sinmlation, can be easily defined t)y simply applying the l)r()-

cedure described for the nmltidimensional scalar case to each component of u. In

practice, especially for viscous terms which are not symmetric lint still semip()s-

itive definite, such as for the compressil)le Navier-Stokes equations, we can use

q = (0_._ u ..... 0_., u) a.s the auxiliary variables. Although with this choice, the L 2-

stability result will not be available theoretically, this wouhl not cause any 1)roblem

in practical iml,lementation; see Bassi and Rebay [5] and Bassi et al [6].

The main advantage of these meth()ds is their extremely high parallelizabil-

ity and their high-order accuracy which render them suitable tbr computations

of convection-dominated flows. Indeed. although tile LDG method have a large
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amount of degrees of freedom per element, and hence more computations per ele-

ment are necessary, its extremely local domain of dependency allows a very efficient

parallelization that by far compensates for the extra, amount of local computations.

Acknowledgments. The authors want to thank X. Makridakis for bringing to
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putation.
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